Retrograde transport and steady-state distribution of 125I-nerve growth factor in rat sympathetic neurons in compartmented cultures.
نویسندگان
چکیده
We have used compartmented cultures of rat sympathetic neurons to quantitatively examine the retrograde transport of 125I-nerve growth factor (NGF) supplied to distal axons and to characterize the cellular events that maintain steady-state levels of NGF in cell bodies. In cultures allowed to reach steady-state 125I-NGF transport, cell bodies contained only 5-30% of the total neuron-associated 125I-NGF, whereas 70-95% remained associated with the distal axons. This was true over an 8 pM to 1.5 nM 125I-NGF concentration range, indicating that saturation of high affinity receptors could not account for the large fraction of 125I-NGF remaining in axons. Dissociation assays indicated that 85% of 125I-NGF associated with distal axons was surface-bound. At steady-state, only 2-25% of the distal axon-associated 125I-NGF was retrogradely transported each hour, with higher transport rates associated with younger cultures and lower 125I-NGF concentrations. The velocity of 125I-NGF retrograde transport was estimated at 10-20 mm/hr. However, as in a previous report, almost no 125I-NGF transport was observed during the first hour after 125I-NGF administration, indicating a significant lag between receptor binding and loading onto the retrograde transport system. During 125I-NGF transport through axons spanning an intermediate compartment in five-compartment cultures, little or no 125I-NGF was degraded or released from the axons. After transport, 125I-NGF was degraded with a half-life of 3 hr. In summary, although some cellular events promoted NGF accumulation in cell bodies, distal axons represented by far the principal site of NGF-receptor interaction at steady-state as a result of a low retrograde transport rate.
منابع مشابه
Binding, internalization, and retrograde transport of 125I-nerve growth factor in cultured rat sympathetic neurons.
Sympathetic neurons internalize nerve growth factor (NGF) and transport it retrogradely to their cell bodies where it appears to serve a trophic function in maintaining neuronal survival. We have characterized the binding, internalization, and retrograde transport of 125I-NGF by cultured rat sympathetic neurons. After 3 to 4 weeks in culture, sympathetic neurons possessed approximately 2 X 10(7...
متن کاملRapid Retrograde Tyrosine Phosphorylation of trkA and Other Proteins in Rat Sympathetic Neurons in Compartmented Cultures
According to the current theory of retrograde signaling, NGF binds to receptors on the axon terminals and is internalized by receptor-mediated endocytosis. Vesicles with NGF in their lumina, activating receptors in their membranes, travel to the cell bodies and initiate signaling cascades that reach the nucleus. This theory predicts that the retrograde appearance of activated signaling molecule...
متن کاملBinding and retrograde transport of leukemia inhibitory factor by the sensory nervous system.
Leukemia inhibitory factor (LIF), a peptide growth factor with multiple activities, has recently been shown to support the generation and survival of sensory neurons in cultures of mouse neural crest and dorsal root ganglia (DRG). We have conducted binding experiments with 125I-LIF on cultures of DRG to determine the receptor distribution for LIF on these cells and found that at least 60% of th...
متن کاملPreparation and maintenance of dorsal root ganglia neurons in compartmented cultures.
Neurons extend axonal processes that are far removed from the cell body to innervate target tissues, where target-derived growth factors are required for neuronal survival and function. Neurotrophins are specifically required to maintain the survival and differentiation of innervating sensory neurons but the question of how these target-derived neurotrophins communicate to the cell body of inne...
متن کاملCharacterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor
We have demonstrated in vitro and in vivo the specific binding of a monoclonal antibody to the rat nerve growth factor (NGF) receptor. Previous work had shown that this antibody, designated 192-IgG, does not compete with NGF for binding to the NGF receptor of PC12 cells, but instead interacts with the receptor to increase NGF binding to PC12 cells (Chandler, C. E., L. M. Parsons, M. Hosang, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 4 شماره
صفحات -
تاریخ انتشار 1997